Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Journal of Biomedical Engineering ; (6): 369-378, 2021.
Article in Chinese | WPRIM | ID: wpr-879286

ABSTRACT

Photoacoustic imaging (PAI) is a rapidly developing hybrid biomedical imaging technology, which is capable of providing structural and functional information of biological tissues. Due to inevitable motion of the imaging object, such as respiration, heartbeat or eye rotation, motion artifacts are observed in the reconstructed images, which reduce the imaging resolution and increase the difficulty of obtaining high-quality images. This paper summarizes current methods for correcting and compensating motion artifacts in photoacoustic microscopy (PAM) and photoacoustic tomography (PAT), discusses their advantages and limits and forecasts possible future work.


Subject(s)
Artifacts , Microscopy , Motion , Photoacoustic Techniques , Tomography, X-Ray Computed
2.
Korean Journal of Radiology ; : 94-101, 2019.
Article in English | WPRIM | ID: wpr-719594

ABSTRACT

OBJECTIVE: To investigate the efficacy of motion-correction algorithm (MCA) in improving coronary artery image quality and measurement accuracy using an anthropomorphic dynamic heart phantom and 256-detector row computed tomography (CT) scanner. MATERIALS AND METHODS: An anthropomorphic dynamic heart phantom was scanned under a static condition and under heart rate (HR) simulation of 50–120 beats per minute (bpm), and the obtained images were reconstructed using conventional algorithm (CA) and MCA. We compared the subjective image quality of coronary arteries using a four-point scale (1, excellent; 2, good; 3, fair; 4, poor) and measurement accuracy using measurement errors of the minimal luminal diameter (MLD) and minimal luminal area (MLA). RESULTS: Compared with CA, MCA significantly improved the subjective image quality at HRs of 110 bpm (1.3 ± 0.3 vs. 1.9 ± 0.8, p = 0.003) and 120 bpm (1.7 ± 0.7 vs. 2.3 ± 0.6, p = 0.006). The measurement error of MLD significantly decreased on using MCA at 110 bpm (11.7 ± 5.9% vs. 18.4 ± 9.4%, p = 0.013) and 120 bpm (10.0 ± 7.3% vs. 25.0 ± 16.5%, p = 0.013). The measurement error of the MLA was also reduced using MCA at 110 bpm (19.2 ± 28.1% vs. 26.4 ± 21.6%, p = 0.028) and 120 bpm (17.9 ± 17.7% vs. 34.8 ± 19.6%, p = 0.018). CONCLUSION: Motion-correction algorithm can improve the coronary artery image quality and measurement accuracy at a high HR using an anthropomorphic dynamic heart phantom and 256-detector row CT scanner.


Subject(s)
Coronary Vessels , Heart Rate , Heart , Phenobarbital
3.
Investigative Magnetic Resonance Imaging ; : 71-77, 2018.
Article in English | WPRIM | ID: wpr-740117

ABSTRACT

PURPOSE: To develop a two-dimensional (2D) image-based respiratory motion correction technique for free-breathing coronary magnetic resonance angiography (MRA). MATERIALS AND METHODS: The proposed respiratory navigator obtained aliased a 2D sagittal image from under-sampled k-space data and utilized motion correlation between the aliased images. The proposed navigator was incorporated into the conventional coronary MRA sequence including the diaphragm navigator and tested in three healthy subjects. RESULTS: The delineation of major coronary arteries was significantly improved using the proposed 2D motion correction (S/I and A/P) compared to one-dimensional (S/I) correction using the conventional diaphragm navigator. CONCLUSION: The 2D image-based respiratory navigator was proposed for free-breathing coronary angiography and showed the potential for improving respiratory motion correction compared to the conventional 1D correction.


Subject(s)
Coronary Angiography , Coronary Vessels , Diaphragm , Healthy Volunteers , Magnetic Resonance Angiography
4.
Korean Journal of Radiology ; : 881-887, 2017.
Article in English | WPRIM | ID: wpr-191318

ABSTRACT

OBJECTIVE: Using a pulsating coronary artery phantom at high heart rate settings, we investigated the efficacy of a motion correction algorithm (MCA) to improve the image quality in dual-energy spectral coronary CT angiography (CCTA). MATERIALS AND METHODS: Coronary flow phantoms were scanned at heart rates of 60–100 beats/min at 10-beats/min increments, using dual-energy spectral CT mode. Virtual monochromatic images were reconstructed from 50 to 90 keV at 10-keV increments. Two blinded observers assessed image quality using a 4-point Likert Scale (1 = non-diagnostic, 4 = excellent) and the fraction of interpretable segments using MCA versus conventional algorithm (CA). Comparison of variables was performed with the Wilcoxon rank sum test and McNemar test. RESULTS: At heart rates of 70, 80, 90, and 100 beats/min, images with MCA were rated as higher image scores compared to those with CA on monochromatic levels of 50, 60, and 70 keV (each p < 0.05). Meanwhile, at a heart rate of 90 beats/min, image interpretability was improved by MCA at a monochromatic level of 60 keV (p < 0.05) and 70 keV (p < 0.05). At a heart rate of 100 beats/min, image interpretability was improved by MCA at monochromatic levels of 50 keV (from 69.4% to 86.1%, p < 0.05), 60 keV (from 55.6% to 83.3%, p < 0.05) and 70 keV (from 33.3% to 69.3%, p < 0.05). CONCLUSION: Low-keV monochromatic images combined with MCA improves image quality and image interpretability in CCTAs at high heart rates.


Subject(s)
Angiography , Coronary Vessels , Heart Rate , Heart , Tomography, X-Ray Computed
5.
Nuclear Medicine and Molecular Imaging ; : 172-180, 2008.
Article in Korean | WPRIM | ID: wpr-75856

ABSTRACT

PET/CT fused image with anatomical and functional information have improved medical diagnosis and interpretation. This fusion has resulted in more precise localization and characterization of sites of radio-tracer uptake. However, a motion during whole-body imaging has been recognized as a source of image quality degradation and reduced the quantitative accuracy of PET/CT study. The respiratory motion problem is more challenging in combined PET/CT imaging. In combined PET/CT, CT is used to localize tumors and to correct for attenuation in the PET images. An accurate spatial registration of PET and CT image sets is a prerequisite for accurate diagnosis and SUV measurement. Correcting for the spatial mismatch caused by motion represents a particular challenge for the requisite registration accuracy as a result of differences in PET/CT image. This paper provides a brief summary of the materials and methods involved in multiple investigations of the correction for respiratory motion in PET/CT imaging, with the goal of improving image quality and quantitative accuracy.


Subject(s)
Positron Emission Tomography Computed Tomography
6.
Korean Journal of Nuclear Medicine ; : 413-420, 2005.
Article in Korean | WPRIM | ID: wpr-200019

ABSTRACT

PURPOSE: Neuroreceptor PET studies require 60-120 minutes to complete and head motion of the subject during the PET scan increases the uncertainty in measured activity. In this study, we investigated the effects of the data-driven head motion correction on the evaluation of endogenous dopamine release (DAR) in the striatum during the motor task which might have caused significant head motion artifact. MATERIALS AND METHODS: [11C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (pre-task: 30-50 min, task: 70-90 min, post-task: 110-120 min) were realigned to the first frame in pre-task condition. Intra-condition registrations between the frames were performed, and average image for each condition was created and registered to the pre-task image (inter-condition registration). Pre-task PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the others. Volumes of interest (VOI) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DAR was calculated as the percent change of BP during and after the task. SPM analyses on the BP parametric images were also performed to explore the regional difference in the effects of head motion on BP and DAR estimation. RESULTS: Changes in position and orientation of the striatum during the PET scans were observed before the head motion correction. BP values at pre-task condition were not changed significantly after the intra-condition registration. However, the BP values during and after the task and DAR were significantly changed after the correction. SPM analysis also showed that the extent and significance of the BP differences were significantly changed by the head motion correction and such changes were prominent in periphery of the striatum. CONCLUSION: The results suggest that misalignment of MRI-based VOI and the striatum in PET images and incorrect DAR estimation due to the head motion during the PET activation study were significant, but could be remedied by the data-driven head motion correction.


Subject(s)
Artifacts , Basal Ganglia , Brain , Cerebellum , Dopamine , Head , Healthy Volunteers , Magnetic Resonance Imaging , Positron-Emission Tomography , Putamen , Retrospective Studies , Reward , Sensory Receptor Cells , Uncertainty , Video Games
SELECTION OF CITATIONS
SEARCH DETAIL